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Experiments have been undertaken to characterize the flow field over a delta wing, with
an 85◦ sweep angle, at 12.5◦ incidence. Application of a laser Doppler anemometer
has enabled detailed three-dimensional velocity data to be obtained within the free
shear layer, revealing a system of steady co-rotating vortical structures. These sub-
vortex structures are associated with low-momentum flow pockets in the separated
vortex flow. The structures are found to be dependent on local Reynolds number,
and undergo transition to turbulence. The structural features disappear as the sub-
vortices are wrapped into the main vortex core. A local three-dimensional Kelvin–
Helmholtz-type instability is suggested for the formation of these vortical structures
in the free shear layer. This instability has parallels with the cross-flow instability that
occurs in three-dimensional boundary layers. Velocity data at high Reynolds numbers
have shown that the sub-vortical structures continue to form, consistent with flow
visualization results over fighter aircraft at flight Reynolds numbers.

1. Introduction
There are both fundamental and practical reasons for an interest in the details

of the development process in three-dimensional free shear layers. Free shear layers
occur in many fluid problems such as jet flows, mixing layers and wakes. Curved
three-dimensional free shear layers are widespread, being present over more complex
geometries such as rearward facing steps, and flows with wall injection. In particular,
complex separated vortical flow fields are also crucial to aerodynamic design of
modern aircraft. On high-performance combat aircraft vortices occur over the slender
forebody, the leading-edge extension (LEX) and the main wing, and dominate the
aerodynamics of the aircraft at high angles of attack.

A delta wing flow field provides the most fundamental example of the basic
separation features seen in most high angle of attack flows. At moderate angles of
attack the pressure surface boundary layer on a delta wing is unable to negotiate the
sharp leading edge and hence separates. The resulting free shear layers then roll up to
form a pair of concentrated vortex cores over the suction side of the wing (figure 1),
greatly enhancing the lift and improving the overall performance of the wing. Most
detail studies of free shear layers have focused on situations where the free shear
layer is essentially two-dimensional. Studies of three-dimensional shear layers have
been less extensive, but have demonstrated that there are significant differences from
the two-dimensional case. The slender delta wing at incidence provides the classic
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Angle of
attack

Figure 1. The vortical flow field over a delta wing at high angle of attack.

model flow for the examination of three-dimensional separated flows, and has been
the subject of many studies, only some of which can be referenced here.

Perhaps surprisingly, relatively few of these studies have concentrated on the
development of the shear layer itself. Most studies have been concerned with the
nature and consequences of the rolled-up vortex core above the wing. This is found to
exhibit many unexpected phenomena, for example vortex breakdown at higher angles
of attack. The present work has concentrated on an examination of the development
of the free shear layer as it leaves the leading edge and rolls up around the vortex
cores. Phenomena associated with the major concentrated vortices are not examined
in the present paper, other than as a by-product of the principal measurements.

It has been known for some time that the free shear layer on a delta wing is subject
to a number of instability phenomena. The most obvious is a time-varying instability,
closely related to the classic Kelvin–Helmholtz (K–H) instability of a two-dimensional
free shear layer. This was first examined by Gad-el-Hak & Blackwelder (1985, 1986).
It is generally found that this instability is shed uniformly along the leading edge
of the wing, and then travels up and around the shear layer, finally to be wrapped
into the core of the vortex. A key feature of this instability is that because it travels
around the shear layer, it cannot be seen with the naked eye, and can only be observed
through flash photography or equivalent techniques.

It was shown by Lowson (1988) that the K–H vortex structures formed in the
shear layer on a delta wing went through a pairing mechanism, similar to that
observed by Winant & Browand (1974) in a simple two-dimensional shear layer. It
was also found that this unsteady instability was exceptionally sensitive to external
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conditions. Travelling vortex structures could be generated from a wide variety of
external sources, for example the vibration from the tunnel cooling fan operating at
50 Hz. Generally it has been found that phenomena associated with the travelling
K–H instabilities in the strongly curved shear layer are essentially parallel to effects
observed in a two-dimensional free shear layer. However, another form of shear layer
instability has a variety of unexpected and, to date, incompletely examined features.
These are steady instabilities, which can be readily observed with the naked eye, given
some form of smoke or other visualization medium.

These structures within the rolled-up vortex core were examined in detail by
Payne (1987), Payne et al. (1988) using both flow visualization and Pitot measurement
techniques. The existence of significant steady sub-structure in the separated vortex
flow was unexpected, and was initially thought to be related to the unsteady structures
described above. However, Lowson (1988) conducted a survey over 70◦ and 80◦ delta
wings at low Reynolds number in a wind tunnel which showed that the steady and
unsteady instabilities were distinct, although there were significant mutual interference
effects. It was shown that the steady instability could be observed close to the leading
edge of the wing, where smoke visualizations showed a series of steady streaks in the
separating shear layer. These amplified as the shear layer wrapped around the wing to
develop into the larger scale steady structures originally observed by Payne. Reynolds
& Abtahi (1989) confirmed these findings independently. They found both the steady
and unsteady forms of instability over a 75◦ delta wing tested in a free surface water
channel, and also showed that the steady longitudinal structures could be identified in
the separating free shear layer at leading-edge sweeps of 56◦. They again found that
the unsteady instability was exceptionally sensitive to external disturbance, requiring
a settling period of up to 30 minutes before the unsteady sources were not forced by
residual disturbances in the water channel.

Campbell, Chambers & Rumsey (1989) presented preliminary flow visualization
evidence suggesting that a steady instability structure of the turbulent shear layer also
appeared at flight Reynolds numbers over the LEX of fighter aircraft. Condensation
patterns could be seen under certain atmospheric conditions that had clear similarities
to the low-speed laminar flow visualizations of Payne over slender delta wings. The
existence of convected turbulent structures in a free shear layer at high Reynolds
number is well known and is the topic of much debate, but the appearance of
steady structures at full-scale Reynolds numbers is unexpected. More recent wind
tunnel investigations over delta wings by Verhaagen, Meeder & Verhelst (1993) and
Washburn & Visser (1994) have also found evidence of streamwise vortical structures
at high Reynolds numbers (up to 1.25 × 106). Washburn & Visser used a five-hole
Pitot static probe to locate the steady structures. This raises further questions, since
it is well known that such measurements in the concentrated vortex core can be
seriously misleading because the probe can induce vortex breakdown. Even though
care was taken in these investigations to minimize the effect of the probe on the
flow field, this was still an obvious concern given the small scale of the structures
compared to the scale of measurement device. Washburn & Visser found that the
streamwise sub-vortices were co-rotating, with vorticity the same sign as that of the
shear layer, and followed helical streamlines into the core of the vortex. This was also
found independently in a study reported by Lowson, Riley & Swales (1995) using
laser Doppler anemometry.

The existence of steady vortical structures in a shear layer at high Reynolds
number is significant for two reasons. First it suggests that the phenomena studied
at low Reynolds number could have significant practical consequences. For example
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there have been a series of major incidents, especially in the USA, associated with
unexpectedly high levels of aerodynamic forcing on fighter aircraft at high angles of
attack. Secondly, from the fundamental viewpoint, the continuity of phenomena from
low to high Reynolds number suggests that the principal mechanisms may be inertial
rather than viscous. The work reported in the present paper has been principally
directed at obtaining a more detailed understanding of these steady structures.

There is also an interesting parallel with boundary layer flows. Two-dimensional
instabilities, in particular the classic Tollmien–Schlicting waves, have been widely
studied. However, it is now appreciated that many of the most critical phenomena
in boundary layers are due to three-dimensional effects, cf. Saric & Reed (1988). Al-
though transition, particularly in its early stages, can be described via two-dimensional
models, the final stages of the transition process are normally dominated by three-
dimensional instabilities. Many of the more important practical effects causing tran-
sition on real wings are also dominated by three-dimensional effects, including at-
tachment line transition and cross-flow instabilities. Parallels with the free shear layer
above may well be relevant. Whereas Tollmien–Schlicting waves travel with respect to
the local flow, most of the more important three-dimensional instabilities (e.g. Taylor–
Görtler or cross-flow) are characterized by steady longitudinal patterns, which can be
readily visualized in experiment. Three-dimensional instabilities normally dominate
boundary layer transition in practical circumstances.

The fact that the sub-vortices in the free shear layer instability are steady and
co-rotating seems to be an important pointer to the potential mechanism. The most
obvious feature of the flow is strong curvature, and it was initially suggested that the
mechanism could parallel the Taylor–Görtler instability. However, as shown in the
benchmark paper by Gregory, Stuart & Walker (1955) on the transition of a skewed
boundary layer, the Taylor–Görtler form of instability has vortices of alternating
sign, while cross-flow instabilities can generate co-rotating vortices. Thus there is a
strong case for associating cross-flow instability with the source of the steady co-
rotating sub-vortices in the free shear layer of a delta wing. This suggestion was first
made by Washburn & Visser (1994). However, cross-flow instability is based on a
mathematical proof of a simplified two-dimensional boundary layer. Free shear layer
instability is normally dominated by K–H type instabilities, together with secondary
three-dimensional effects, and hence should not be discounted.

Time-accurate unsteady numerical simulations of the Navier–Stokes equations by
Gordnier & Visbal (1994, 1995) found a K–H type instability in the free shear layer
of a 76◦ delta wing, although the formation of these unsteady vortices was not
completely consistent with the experimental observations of Gad-el-Hak & Black-
welder or Lowson. Other computational investigations have also found unsteady
flow behaviour in the leading-edge region over delta wings (Murman & Rizzi 1986;
Verhaagen et al. 1995), but these solutions were not time-accurate and hence did not
capture the unsteady vortical structures. However, neither these calculations, nor any
other computational investigation to date, have shown any indication of a steady
instability structure (see Visbal 1995, for a comprehensive review). This is of obvious
concern, since an inability to reproduce a basic mechanism clearly identified at low
Reynolds number calls into question the accuracy of more complex computations at
high Reynolds number. There are clearly significant limitations with computational
models of complex shear flows. Washburn & Visser suggest that the reason for the
incorrect computational results is simply inadequate grid resolution. However, since
the scale of the steady structures is generally the same as that of the unsteady struc-
tures successfully computed by Gordnier & Visbal, it seems that this explanation
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must be incomplete. Reservations have also been put forward by Doligalski, Smith &
Walker (1994) regarding the ability of numerical solutions of the Navier–Stokes equa-
tions, which employ fixed spatial meshes or spectral schemes, to accurately model the
vortex-induced separation, and roll-up, of a viscous boundary layer. It was suggested
that numerical computations adopting a Lagrangian type of specification would have
more success, where trajectories of fluid particles are evaluated as functions of their
initial position and time. This would be of benefit in modelling separation, since
many fluid particles are convected into the region of separation, resulting in greater
resolution. Separation of the windward boundary layer over a delta wing is usually
fixed by a sharp leading edge. However, the primary vortex-induced separation of
the leeward surface boundary layer that rolls up to form the secondary vortex is a
process that, according to Doligalski et al. (1994), fixed spatial meshes and spectral
schemes would find difficult to model. The presence of the secondary vortex is a key
factor in the development of the free shear layer.

More recently, a Lagrangian-type numerical scheme has been successfully imple-
mented on a uniformly accelerating flat plate by Koumoutsakos & Shiels (1996).
The results established, for the first time, the presence of an intrinsic K–H instability
structure in the free shear layers of a flat plate, confirming previous experimental
evidence, such as the clear visualizations of Pierce (1961). These computational results
manage to reproduce the structure of previous experimental visualizations with far
more success than that of the Eulerian schemes used to model the K–H instabilities
found over delta wings. There are certainly parallels here between the two-dimensional
case of a flat plate and the three-dimensional development over a delta wing, as pre-
viously mentioned by Lowson (1988). However, application of Lagrangian schemes
to the delta wing problem is an avenue of research that is yet to be explored. As will
always be the case, there is still a need for detailed accurate experimental data not
only to validate present-day computational models, but also to provide a basis for
the formulation of new and more accurate models.

2. Present experiments
2.1. Background

The present experiments build from previous investigations which used flow visual-
ization to study the development of the shear layer and the formation of both the
unsteady and steady instabilities (Lowson 1988, 1991). The earlier experiments were
undertaken at low Reynolds number over a 70◦ and an 80◦ sweep delta wing. This
research was hampered by the difficulty in obtaining useful flow field measurements
at low air speed with conventional instrumentation, and also by a degree of flow
unsteadiness, again as a direct result of the low air speed.

It was found that transition effects were usefully delayed by increasing the sweep
angle of the wing, and the present research has been conducted on 85◦ delta wings.
On these wings transition is delayed to such an extent that higher air speeds, ranging
from 3 to 10 m s−1, can be used to study the laminar instability flow mechanisms.
This is an attractive speed for the use of modern laser Doppler anemometry (LDA)
for three-dimensional flow measurement.

The results presented in this report depend on new methods for high-resolution
LDA measurements, which have recently been developed at the University of Bristol
(Swales et al. 1993). One of the principal benefits of this enhanced resolution lies
in the minimization of the error incurred within regions of steep velocity gradient.
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Λ c t t/c σ
85◦,a 471 11.5 0.024 30◦

85◦ 435 3.3 0.008 45◦

85◦ 444 1.3 0.003 30◦

Table 1. Geometrical details of the three 85◦ delta wings used in these experiments – all linear
dimensions in mm (a – plenum chamber).

This has enabled highly accurate measurements to be made throughout the complex
flows found over delta wings at these low Reynolds numbers. In previous experiments
in air it was often found that useful data could not be obtained over a region
of concentrated vorticity. This was due to the poor signal to noise ratio of the
LDA techniques employed. New techniques developed within the Department of
Aerospace Engineering, University of Bristol (and described in more detail in § 2.4)
have provided a method for overcoming the shortcomings experienced by previous
investigators. The availability of these techniques was an important element in the
planning of the present work.

2.2. Model and wind tunnel

The experiments were conducted in the 0.8m×0.6m low-turbulence, closed-return wind
tunnel in the Department of Aerospace Engineering. The tunnel has a contraction
ratio of 12 : 1, and was specifically designed to produce a turbulence level of less
than 0.05% over the full working range of the tunnel (1–100 m s−1). In previous
work, Lowson (1988), a high-blockage peg board had been inserted immediately
downstream of the working section in order to allow the tunnel velocity to be reduced
to 0.09 m s−1, whilst retaining low turbulence. In the present experiments the peg
board has not been used while taking velocity data, although some references will
be made to the type of flow field obtained under those conditions. The cooling fan
for the wind tunnel motor that imparts an unwanted 50 Hz vibrational input to the
model was disengaged for the present experiments.

The 85◦ delta wing in this survey was manufactured to a high degree of precision.
The surface roughness on the wing was measured at 1.5 µm. The leading edge of
the wing was made as thin as possible and averaged 0.12 mm in thickness. The wing
was constructed containing a plenum chamber and a uniformly machined smoke slot,
0.2 mm wide and situated 1 mm below the leading edge of the wing. This permitted
smoke to be released directly into the shear layer at the wing leading edge. A direct
comparison between velocity data and flow visualization results was possible. The
plenum chamber extended from x/c = 0.26to1.0 (non-dimensionalized chordlength,
origin at the apex of the wing), and thus could not provide flow visualizations close
to the apex of the model. Two further 85◦ wings, without plenum chambers, were
also used to study the effect of windward geometry on the shear layer instabilities.
The dimensions of the wings are shown in table 1. The geometrical terms, together
with the body-fixed axis system being used, are defined in figure 2.

The support rig was based on a two-strut system which incorporated a turntable
to allow full variation in the angle of yaw. The silver steel struts were both 12 mm
in diameter and attached to the wing via simple brackets. The brackets were located
at x/c = 0.7 and x/c = 0.95, on the non-chamfered section of the pressure surface.
The pipe inlet to the plenum chamber was located at x/c = 0.8, in between the two
struts. The incidence for these tests did not need to be determined from outside the
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Figure 2. Schematic of the delta wing defining the geometric parameters in table 1.

tunnel. Hence the largest error in the measured incidence was the degree to which
one-dimensional flow could be achieved in the test section. This could be guaranteed
to ±0.03◦. All the major results reported in the present paper were taken at a single
angle of incidence (α) of 12.5◦.

2.3. Flow visualization

A Spectra–Physics 5 W argon-ion laser, operating in all lines mode, was used to
illuminate the flow by creating a light sheet via a small cylindrical lens. An optical
bench set-up provided beam steering to achieve a light sheet of specific height and
chordwise position. The cylindrical lens could then be rotated to position this light
sheet at any prescribed angle of incidence in the tunnel. For the cross-sectional
visualizations of the flow field it was inclined normal to the wing surface.

The principal flow visualization medium used was smoke, which was generated by
vaporizing mineral-based oil on a heated metal filament. The smoke was then injected
into the plenum chamber within the wing and released through the leading-edge slots.
The smoke was injected under minimal pressure to avoid disturbing the windward
boundary layer, which defines part of the initial conditions for the free shear layer.
There was some concern over the possible effects of the leading-edge smoke slot on
the flow data acquired. Velocity data were acquired over the wing both with smoke
visualization and with the slot blocked. There was no discernible difference in the
results and hence the method of introducing the visualization medium into the flow
field was validated.

The flow visualization photographs presented have been illuminated using either
a laser light sheet or a flash, and in some cases both. A 35 mm camera with motor
drive was used together with Kodak T-Max film (400 ASA). For the laser light sheet,
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which presents a cross-section of the flow field, photographs were taken at a minimum
exposure of 1/2000 s at f1.2 in order to capture an instantaneous picture. The flash
photographs, which illuminated the whole flow field, were taken at 1/125 s at f22.
The longer exposure was, in fact, the shortest exposure that could be synchronized
with the flash. However, since the time that the flow field was illuminated depended
upon the speed of the flash, which is approximately 1/10 000 s, the longer exposure
did not affect the sharpness of the picture. The small aperture was required to provide
sufficient depth of field to bring the whole flow field into focus. The combination
of both laser light sheet and flash required a longer exposure than for the flash
photographs and in the cases shown 1/15 s was used. This was due to the small
aperture, required to provide adequate depth of field, not providing enough light to
capture the laser light sheet.

2.4. Laser Doppler anemometer

2.4.1. LDA apparatus

Low wind tunnel speeds are necessary to observe the free shear layer structure in
the laminar regime over a delta wing. The flow field under these conditions has been
found to be highly sensitive to both external noise input and also probe interference.
The non-intrusive aspect of the LDA technique was essential for obtaining useful
flow field measurements.

The Dantec three-component LDA employed consists of two optic heads mounted
on a fully automated three-axis traverse mechanism. The optic heads are linked by
means of two 10 m long fibre-optic cables to a Spectra–Physics 5 W argon-ion laser.
Both optic heads are free to be rotated within their respective gimbal mounts, which, in
turn, can be swept and dipped to provide the required optical configuration. Two pairs
of beams (green and blue) are emitted from one head, referred to as the ‘2D’ head,
and a third violet pair from the opposing ‘1D’ head. Both heads are able to receive as
well as transmit light and consequently either the direct backscatter (receiving light
from the same head) or the off-axis backscatter (receiving light from the opposing
head) mode of light collection can be employed. The raw data collected by the LDA is
in terms of the frequency of the Doppler burst signals generated by seeding particles,
measured in three non-orthogonal components. In the present experiments the seeding
particles were produced by two Dantec Type 55L18 atomizers (Ondina oil based),
which resulted in an average particle size of 0.7 µm. The frequency information for
each channel is then processed by means of three Dantec Burst Spectrum Analysers.

2.4.2. LDA alignment

Each time the LDA was set up outside the tunnel it was necessary to obtain
an optical configuration that would allow the measurement volume to reach the
appropriate parts of the flow field. This, obviously, can change depending on the
model being used, the angle of attack and the region of the flow required to be
measured. Once the optical configuration has been decided upon, the beams and the
collection volumes need to be brought to a common focus. The technique, described
in detail by Swales et al. (1993), consists of employing the output of a light-dependent
resistor mounted behind a 20 micron pin-hole to determine the peak intensity position
(assuming a quasi-Gaussian distribution) across either a beam or a collection volume.
By bringing the foci of the two collection volumes, and then each of the six beams
in turn, to the face of this pin-hole a very high level of alignment can be guaranteed.
The principal advantage of the technique is that it does not rely on the visual
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Effective measurement volume size
Frequency information from 2D head
Frequency information from 1D head

1D 2D 1D 2D

DIRECT BACKSCATTER

Possibility of misalignment while
still recording high data rates.

OFF-AXIS BACKSCATTER

Slight misalignment will result in
immediate loss of data rate.

Figure 3. The two different modes of light collection, illustrating the much smaller measurement
volume obtainable with the off-axis backscatter mode of light collection.

interpretation of the images of beams passing through an objective lens, but rather
on the quantitative output of a meter.

Alignment has been found to be the absolutely crucial factor in obtaining good
data. With good alignment higher data rates can be consistently guaranteed and, most
importantly for this application, the simultaneous, off-axis backscatter mode of light
collection can be employed. In this mode, light scattered by particles crossing the
intersection volume created by the beams from one head, is received by the opposing
head. This differs from the direct backscatter mode where the collection volumes are
aligned with their respective intersection volumes (figure 3). The resultant measure-
ment volume is consequently more spherical, rather than the classical, ellipsoidal shape
as defined by the e−2 law, Drain (1980). In terms of the transit time, that is the time
for which the Doppler signal is validated, an effective spherical measurement volume
of less than 0.1 mm in diameter can be guaranteed. Furthermore, if hardware and
software coincidence filtering is employed, then a burst is only accepted if a seeding
particle passes through all three effective measurement volumes simultaneously. This
results in a further reduction in the measurement volume size. The average size of the
measurement volume, based on the transit distance for a typical coincident data set,
was found to be 0.048 mm. Resolutions of 0.050 mm can be regularly attained using
this technique. This level of resolution was critical to obtaining the data presented
herein.

Many attempts to use LDA techniques to measure velocities in the vortex core
in air have failed due to the centrifuging effect, which tends to remove particles
from this region. In the direct backscatter mode of light collection it is far easier to
obtain a good alignment which, together with the significantly elongated size of the
measurement volume, guarantees high data rates. This has led to investigators using
the direct backscatter mode of light collection in order to increase the data rate in
the vortex core. However, the measurement volume can be up to 3 mm in length in
this mode of light collection and will result in a significant velocity biasing, unless the
model and the wind tunnel are large enough for this length scale to be insignificant.
The flow field structures being studied in this experimental set-up are of the same
order of magnitude as the length of the direct backscatter measurement volume, hence
it is necessary to employ an off-axis configuration. Furthermore, there is no guarantee
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that the two optic heads are recording data from the same spatial position in the
direct backscatter mode, due to the fact that they are operating independently.

Velocity biasing can also be accentuated by the variation in the seeding density
found across vortex flows over delta wings in air. This is characterized, as mentioned
above, by the lack of particles found in the vortex core. The consequences of velocity
biasing due to seeding density are similar to biasing due to velocity gradients. A
greater number of signals are detected from the region of flow more densely seeded
within a measurement volume, mirroring the case of more signals being detected by
the region of higher speed flow within a measurement volume. The elongation of the
measurement volume using a traditional direct backscatter approach, together with
this variation in seeding density, has meant that data are swamped by extraneous
signals along the length of the measurement volume. It may be noted that although
the seeding density issue would not be a problem in water-based measurements, the
other issues discussed would apply equally.

The high resolution gained by operating in the off-axis backscatter mode of light
collection has been made workable by increased data rates, due to the accuracy of the
new alignment techniques. This eliminates the problems of previous direct backscatter-
based LDA techniques and provides a capability for effective measurement throughout
the whole vortical flow field.

2.5. Data reduction and presentation

It is necessary to convert the frequency data obtained by the LDA to velocity
data using calibration factors, which are based on the wavelength of the light in
the particular pair of beams being considered and on the semi-angle of the beam
separations. The three non-orthogonal velocity vectors are then transformed into a
global set of orthogonal velocity vectors (u, v, w). The matrix for this transformation
was calculated using the pin-hole meter and the LDA traverse system (Rickards,
Swales & Barrett 1995). Using the pin-hole it is possible to determine coordinate
locations for all six beams in two planes perpendicular to the y-axis of the wing. From
these coordinates beam vectors can be calculated which allow the determination of
the beam separation angles and the beam measurement vectors, the former providing
accurate calibration factors and the latter leading to the transformation matrix. The
ability to determine the accuracy of the location of the beam centres, using the
traverse and the pin-hole meter, has enabled an estimate of the error associated
with the complete transformation from non-orthogonal frequency data to orthogonal
velocity vectors. This has been reported in Riley (1996), together with an estimation
of other possible errors in the system. For the data presented in the present paper
the largest error in the measured velocities is due to the matrix transformation from
non-orthogonal frequency data to orthogonal velocity vectors and is equal to ±1.8%
of the total velocity magnitude.

The velocity data have been presented in terms of the body-fixed axis system defined
in figure 2. The term ‘axial’ has been used throughout this report to define the x-axis
direction, in the same way that ‘spanwise’ and ‘vertical’ have been used to represent
the y-axis and the z-axis directions, respectively. The requirements of these tests were
for traverses to be performed perpendicular to the upper surface of the delta wing
in a spanwise direction. The development of the instabilities was determined, from
flow visualization, to be the same for both sides of the wing. Hence, a more detailed
grid could be specified, for a given number of data points, by considering only the
starboard side of the delta wing. The data grid density has been specified in the figure
captions of all the velocity and vorticity contour plots in terms of the grid spacing
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(∆y,∆z). The two-dimensional grids used have been of a constant density in both axis
directions and hence only one dimension is given, e.g. ∆(y, z) = 1 mm.

The origin of the y-coordinate in the velocity and vorticity contour plots is not
related to the body-fixed axis system. However, the z-coordinate needs to be defined
relative to the surface of the wing. For the results in § 3.2, § 3.3 and § 4.2 the z-
coordinate origin is approximately 1 mm off the wing surface. The surface of the
wing has been defined schematically in § 4.1 and for the free shear layer profiles
in § 4.3 the origin is coincident with the wing surface.

The axial vorticity (ωx) is represented by the gradients of the in-plane velocity
vectors (v, w) and has been calculated using a central difference method to obtain the
velocity gradients

ωx =
∂w

∂y
− ∂v

∂z
. (2.1)

The vorticity vector is defined as being positive in an anti-clockwise direction
looking in a positive direction along an axis. The majority of the data have been
obtained on the starboard vortex, hence the axial vorticity vector of the primary
vortex will be negative based on the axes convention above. The circulation (Γ ) has
been obtained by taking the line integral of the velocity (u) around a specified area,
where l is the unit line vector

Γ =

∮
u · dl. (2.2)

Both the vorticity and the circulation have been non-dimensionalised in all cases
by the free-stream velocity (U∞) and the wing chordlength (c).

3. Results: the development of the flow field
3.1. Flow field visualizations

Figure 4 shows the basic development of the flow field over the wing as a function of
Reynolds number (i.e. tunnel velocity) using the wing with the plenum chamber. The
photographs show the overall flow field taken from outside the tunnel together with
a simultaneous section through the vortex structure taken at 0.6 chord using the laser
light sheet. Over the chord length of the wing, at a specific Reynolds number, it is
possible to observe laminar, transitional, and turbulent flow. It can also be seen that,
although the flow processes are complicated, they do follow a systematic development
with increase in Reynolds number.

At Reynolds numbers based on chordlength (Rec) of less than 3 × 104 the shear
layer showed no sign of any instability structure or periodic activity and followed a
cylindrical/helical spiral around and into the core of the primary vortex. The very
lowest Reynolds numbers required low tunnel speeds which were obtained through the
use of the peg-board. Figure 4 (a) shows the flow field at Rec = 4.19× 104, the lowest
full-chord Reynolds number achievable without the presence of the peg-board, where
it can be seen that streamwise structure has just begun to appear near the trailing
edge. The cross-sectional views at x/c = 0.6 correspond to a laminar flow. The results
at these low Reynolds numbers were consistent with the results previously obtained by
Lowson (1988) on less slender delta wings. The separated flow is dominated by the ef-
fects of viscosity, and the patterns observed, particularly towards the centre of the vor-
tex, represent streak lines in a laminar flow rather than any well defined shear layer. It
may be noted that the observed spiral results from smoke inserted at the leading edges
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(a) Rex = 25200, Rec = 41900

(b) Rex = 61100, Rec = 101900

(c) Rex = 118000, Rec = 196700

(d) Rex = 175400, Rec = 292300

Figure 4. Cross-sectional views (x/c = 0.6) and combination of full and cross-sectional views of
the flow field over the 85◦ delta: α = 12.5◦.

progressively more upstream. The termination of the visualization trace after about
two turns is because smoke has not been introduced further upstream than 0.26 chord.

As the Reynolds number increases beyond 4×104 the streamwise structures become
far more distinct, and form progressively further upstream towards the apex of the
wing. The smoke filaments can be seen to form near the leading edge of the wing
and spiral into the core of the vortex as they pass downstream. As the Reynolds
number is increased still further an unsteady flow can be seen at the trailing edge,
masking any structure to be found in the shear layer and representing the transition
to turbulence (figure 4 b). Comparing the cross-sectional visualizations of figure 4 (b)
and figure 4 (c) it can be seen that the streamwise structures themselves become more
distinct with increasing Reynolds number. Figure 4 (d ) shows a case for which the
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Figure 5. Chordwise location of various flow features with increasing Reynolds number.
Progression of the unsteady flow has been indicated by arrows: α = 12.5◦.

flow has become turbulent at 0.6 chord, radically changing the appearance of the
laser light sheet section. With further increase in Reynolds number the unsteady flow
continues to move towards the apex of the wing until the whole separated flow field
is turbulent beyond x/c = 0.26, the point at which smoke is released into the flow.

Analysis of the flow field was undertaken using a laser light sheet to correlate
the onset of the shear layer structure, transition and full turbulence with increasing
Reynolds number. The results are shown in figure 5 in terms of the free-stream
Reynolds number and non-dimensional chord length. Transition was defined as the
chord location where unsteadiness could first be observed in the flow field. Turbu-
lence represented the condition under which there was no visible laminar structure
left throughout the whole of the local flow. These definitions rely on subjective inter-
pretation, but in practice it was found that the chord locations for the appearance
of each phase of the process could be defined with good accuracy. Repeat estimates
of chord location were usually within 2%. The chordwise position of transition was
generally found to be inversely proportional to the free-stream Reynolds number.
However, there was a clear discontinuity in the upstream progression of transition,
which can be observed in the data of figure 5.

At Rec ≈ 0.70 × 105 disturbances appeared at the trailing edge of the wing,
gradually moving upstream with increasing Reynolds number, and were at first
assumed to represent a natural transition to turbulence. However, at Rec ≈ 1.60 ×
105 the disturbances moved rapidly back downstream. It was established through
photographic evidence that at Rec < 1.60 × 105 the unsteadiness corresponded to a
K–H-type instability structure, as can be seen in the flash photographs of figure 6.
This can be identified as congregations of smoke particles forming at the leading



62 A. J. Riley and M. V. Lowson

Figure 6. The appearance of the unsteady instability in the free shear layer: α = 12.5◦;
Rec = 164 900.

Figure 7. Cross-sectional view of the unsteady instability showing how the structures are stretched
as they are wrapped into the vortex core: α = 12.5◦; x/c = 0.6; Rec = 164 900.

edge and travelling with the shear layer around the vortex. As mentioned above, in
the experiments of Lowson (1988) it was found that this instability could occur prior
to the steady streamwise instability, and would interact with the steady instability
to cause premature transition. Figure 7, a cross-sectional view, clearly shows the
K–H vortical structures being wrapped into the core flow. Comparison with the laser
illuminated cross-sections in figure 4 (c) show a significant change in the type of
vortical structure formed at the leading edge. It should be noted that figure 7 was
captured with a shutter speed of 1/2000th s, and that these structures were not visible
to the naked eye. This form of disturbance is characteristic of previous observations
of the K–H instability. Beyond Rec ≈ 1.60 × 105 the steady sub-structure re-forms
back down the wing and the K–H instability is no longer prominent (figure 4 c).
The fact that, at higher Reynolds numbers, the shear layer re-forms back into the
steady streamwise structures suggests that the unsteadiness associated with the K–H
instability was not a fundamental part of the transition to turbulence. The appearance
of the K–H instability was found to be dependent upon a certain range of tunnel
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Figure 8. Chordwise location of the flow features with increasing Reynolds number plotted on a
log-log scale: α = 12.5◦.

velocities. It will be recalled that although several previous investigators have reported
the generation of K–H instabilities under force-free conditions, it has also been found
that the flow is highly sensitive to external disturbance. These external disturbances
can actually initiate the formation of unsteady vortices, when none are present under
force-free conditions (Reynolds & Abtahi 1989). Due to the above evidence, it is
assumed that this feature of the present results is due to extraneous inputs and
should be discounted as a generic part of the flow. Figure 4 (c) again shows a region
of unsteady flow downstream of the streamwise structure. However, there is no sign of
the characteristic K–H structure and it was assumed that this represented a turbulent
flow field.

The chordwise data are replotted on a log scale in figure 8. The transition, the initial
formation of the K–H instability and the onset of the steady instability all collapsed
into straight lines indicating a clear dependence on a local chord Reynolds number.
The lines shown in figure 8 correspond to local Reynolds numbers (Rex) based on
distance from the apex of 129 000, 78 000 and 30 000, respectively. The fact that the
chordwise position of the K–H instability was dependent on a local Reynolds number,
in the range of tunnel velocities for which it was present, was unusual considering
previous investigations had found the formation to occur simultaneously along the
whole of the leading edge. Figure 7 clearly shows that the formation of the K–H
instability is limited to a certain region along the chordlength. The turbulent data,
although fairly subjective in their definition, give a clear trend for chord location of
fully turbulent flow as a function of Reynolds number. Referring back to figure 5 it
can be seen that the length of the transition region, from the start to the location
of full turbulence, is essentially constant and equal to about 0.35 chord. Thus the
final appearance of turbulence does not a obey a simple inverse law with Reynolds
number. (For reference the data are matched by the curve x/c = 1052Rec

−0.57.) For the
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Figure 9. Comparison of the axial vorticity distribution at two different chordwise stations, at the
same local Reynolds number: α = 14◦; Rex = 112 600.

other effects the dependence on local Reynolds number is unsurprising, particularly
since this is a conical flow.

One point which is obvious from the visualizations, but which needs to be borne
in mind during interpretation of the results, is that locations around the spiral from
the leading edge are associated with flow at the leading edge at progressively more
upstream locations. Thus the flow in the cross-flow plane close to the leading edge
has arisen from locations just upstream, while further around the spiral the flows
observed, for example the concentrated vortex structures, have been generated some
distance upstream and have had an opportunity to develop during their passage down
the wing. However, it can be seen from the visualizations that any development in
the steady structure (apart from transition) is relatively small.

3.2. Laser Doppler measurements of the flow field

The whole process described above from visualization studies was further analysed
using the LDA. Because the key flow processes of interest are steady, data on the flow
field can be captured by traverses. This does require that the tunnel speed is carefully
controlled to be constant. Any unsteadiness in the flow would appear as false spatial
variations in the data recorded. This potential problem was kept in mind throughout
the work, and few data had to be discarded because of non-stationary measurement
conditions. It is believed that overall accuracy of the data reported is as projected
from analysis of the LDA error process (cf. § 2.5).

The local Reynolds number was varied both by taking velocity data at a fixed
chord position (x/c = 0.6) and gradually increasing the tunnel velocity, and also by
taking velocity data at different stations down the wing at a constant tunnel velocity.
Results from these two approaches tended to confirm the conclusions from the flow
visualizations, regarding local Reynolds number dependence of the flow field. Figure
9 compares the axial vorticity derived at stations 0.3 and 0.6 chord, at tunnel velocities
such that the local Reynolds number is the same. It can be observed that the whole
structure of the flow is essentially identical. The (non-dimensional) position and size
of the sub-vortices, and (to slightly less accuracy) the vorticity/velocity contours, are
very closely correlated in the two cases. Note that the contour spacing in figure 9 (a) is
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half that in figure 9 (b) and that the reduction in the core vorticity is due to diffusion
effects as the scale of the flow increases downstream. Similar results have been found
for all other equivalent cases examined.

Figure 10 (a–f ) shows plots of the axial vorticity for a steadily increasing local
Reynolds number at a fixed chord position of x/c = 0.6, in the range Rex =
0.74 × 105 − 1.70 × 105. This is the local Reynolds number range over which the
streamwise structure develops and the transition to turbulence occurs. The distribution
of the axial vorticity in these two-dimensional grids shows that the congregation of
smoke particles into streamwise streaks corresponds to steady vortical structures, all
rotating in the same sense as the main vortex. It can be seen that the wavelength of
the vortices decreases only slightly throughout the range of Reynolds number shown;
however the strength and the shape changes considerably. The circulation within the
sub-vortices that form at the leading edge increases as the local Reynolds number
increases, prior to transition. Also the shape of the vortices becomes more circular as
the local Reynolds number increases. The appearance of the K–H instability masks
the streamwise structure for the range Rex = 0.78× 105− 1.03× 105 corresponding to
the trends defined in figure 8. Figure 10 (b) corresponds to data taken in this range
and the apparent weakening of the vortical structures measured is thought to be an
artefact of the unsteady flows due to the K–H instability at those tunnel speeds.

Figure 11 presents the vorticity distribution across the whole of the wing at
Rex = 1.18 × 105. The colour shading gives a far better indication of the variation
in positive and negative vorticity between the secondary vortices, the sub-vortices
and the primary vortices. The development of the port vortex can be seen to lag
the starboard vortex (see figure 10 c, d ). It was possible to obtain a symmetrical flow
field through careful on-line adjustment of the yaw angle, using flow visualization to
ascertain the symmetry of the flow field. The flow field was highly sensitive to the
yaw angle, small variations of less than ±0.5◦ having a significant effect.

The wavelength (λ) of the vortical structures was calculated, from both flow
visualization and axial vorticity distributions, by taking the average in-plane distance
between the centres of at least five of the sub-vortices. The measurement accuracy
of the wavelength was found to be approximately ±2%. The wavelength is non-
dimensionalized by the local chordlength and plotted against the local Reynolds
number in figure 12, at two different chord stations, x/c = 0.6 and x/c = 0.8. The
data collapse reasonably well based on the local chordlength and can be seen to
decrease slightly as the local Reynolds number increases. This is despite a general
increase in the scale of the sub-vortex structures with increase in Reynolds number.
The gap in the data at x/c = 0.6 is due to the appearance of the K–H instability. By
analysing the flow field at x/c = 0.8 it was possible to obtain wavelengths at local
Reynolds numbers in this ‘gap’ region, prior to the K–H instability regime that was
dependent on the tunnel velocity. It does appear that the non-dimensional wavelength
of the sub-vortices decreases as the local chord station increases. However, more data
would be required to confirm this point. Data taken at other angles of attack or
sweep in the present experiments confirmed the results from other experiments e.g.
Lowson (1988), Washburn & Visser (1994), showing that the size and wavelength of
the sub-vortices are reduced by an increase in either angle of attack or sweep.

The axial velocity distribution also shows the structure of the shear layer as shown
in figure 13 (a). At the lowest Reynolds number the axial velocity in the sub-vortices
is little different to the main flow. At such speeds the axial velocity in the main vortex
core is also close to that of the main stream. However, as the Reynolds number
increases the axial velocity in the sub-vortices reduces compared to the immediately
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Figure 10. Variation in the axial vorticity due to an increase in local Reynolds number. The local
Reynolds number was varied by increasing the tunnel velocity: α = 12.5◦; x/c = 0.6; ∆(y, z) = 0.75
mm.
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α = 12.5◦.
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Figure 13. Axial velocity (a) and total velocity magnitude (b) showing the low-momentum regions
associated with the streamwise vortical structures. The velocities have been non-dimensionalized
with respect to the free-stream velocity: α = 12.5◦; x/c = 0.6; Rex = 131 350; U∞ = 6.79 m s−1;
∆(y, z) = 0.75 mm.

local flow, so that the structures can be recognized as pockets of low-momentum
flow when they are near the leading edge of the wing. It may be noted that this
effect is opposite to that of the main vortex core, where the axial velocity increases
towards the core axis, at least prior to vortex breakdown. The wake-like profiles of
the sub-vortices disappear as they are wrapped around the main vortex, similar to the
diffusion of the axial vorticity component in figure 10 (c). The low-momentum aspect
of these structures outside the main vortex core was also apparent in the total velocity
distribution shown in figure 13 (b), and has been observed by previous workers from
Pitot traverses (e.g. Payne 1987).

The progression downstream of one of the sub-vortices was mapped by obtaining
ten planes of data between x/c = 0.6 and x/c = 0.687 at a constant chordwise spacing
(figure 14). The velocity vector at the centre of the vortex was used to determine the
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Figure 14. Streamwise and cross-sectional schematics of the flow field around the leading edge,
illustrating the vortical flow field and the data planes used in acquiring the velocity data in figures
15 and 16.

coordinates of the next downstream plane. Using figure 10 (d ) as an example, the ten
planes of data corresponded to following a sub-vortex from an angular position of
about −20◦ to 80◦, using the centre of the main vortex as the origin. The circulation
of the vortical structures, calculated around several vorticity contours of magnitude
−100/−150/−200, was plotted against the chordwise distance at each downstream
station. The result in figure 15 shows that the general trend as the streamwise vortex
passes around the main vortex is a gradual decrease in circulation corresponding to
the apparent trends in figure 10. However as the contour level, around which the
circulation was calculated, was increased the results nearest the leading edge showed
an increase in circulation prior to the decrease.

The axial velocity and total velocity magnitude distributions in figure 13 showed
that the sub-vortices are represented by a wake-like profile near the leading edge of
the wing. As the sub-vortices pass around the main vortex and are wrapped into the
core, figure 13 shows that the deficit in velocity with respect to the free-stream flow
disappeared. Clarification of the acceleration of the sub-vortical core flow can be seen
in figure 16 which plots the change in axial velocity distribution against the radial
distance (r) from the centre of the same sub-vortex that was tracked in figure 14.

3.3. Transition/turbulence

The start of the transition to turbulence was recorded at Rex ≈ 1.29 × 105 and was
initially based on the first indication of unsteadiness within the flow field at the
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Figure 16. Variation in the axial velocity across the core of the sub-vortex as it passes around the
main vortex: α = 12.5◦; Rec = 218 900.

Figure 17. Cross-sectional flow visualization of the transitional flow field, where the first signs of
unsteadiness appear in the inner spirals: α = 12.5◦; x/c = 0.6; Rec = 128 000.
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Figure 18. Side-on view of the flow field from Lowson (1988) over an 80◦ delta showing the upward
curvature of the vortical structures near the leading edge of the wing and the laminar inner spirals:
α = 30◦; Rec = 73 200.

leading edge. However, the first appearance of unsteadiness within the flow field was
not always at the leading edge. Figure 17 shows a cross-section of the flow field
at Rex = 1.28 × 105 where the inner spiral has lost any stable structure. As the
local Reynolds number was increased this unsteadiness moved back around the shear
layer towards the leading edge. This was contrary to the visualizations of Lowson
(1988) who found transition to be caused by an interaction between the K–H and
steady instabilities, which appeared initially at the leading edge. Figure 18 shows how
transition progresses from the leading edge, around the free shear layer, with laminar
structure still present within the inner spirals. Both forms of transition described
above have been found in these experiments. The appearance of the K–H instability
could well be externally induced, as noted in § 3.1, and transition is known to be a
highly sensitive phenomenon. Hence a possible explanation is that this variation in
transition mechanisms is a function of the experimental set-up.

Any variation between the two transition mechanisms was found to be within the
experimental error for the measurements (2% of the chord length) and hence the data
presented in figures 5 and 8 are still valid. The chordwise position of transition and
fully turbulent flow, for both sides of the wing, was found to be symmetrical after
careful adjustment of the yaw angle.

The concentrated vorticity contained within the sub-vortices is dispersed by the
onset of turbulence and under these conditions they cannot be detected from flow
visualization, see figure 4 (d). Figure 19 shows axial root-mean-square (r.m.s.) velocity
distributions for two flow fields, one prior to transition and the other when the
vortex is fully turbulent. Over a relatively small change in Reynolds number the
axial r.m.s. has increased by almost 400% close to the leading edge of the wing. The
distribution of the r.m.s. term has also changed dramatically with peaks of r.m.s. in
the pre-transition field corresponding to the positions of the vortical structures. In
the turbulent field there is no sign of these r.m.s. peaks and, in fact, the highest r.m.s.
values are concentrated in the leading-edge region.

Data taken at higher Reynolds numbers, beyond the transition to turbulence and
up to 1 ×106 based on full chord, have revealed that the streamwise vortices remain,
although not in the concentrated vortical forms that are easy to detect at lower
Reynolds numbers. Figure 20 (a–d ) shows the axial vorticity distributions at several
Reynolds numbers where pockets of vorticity can be seen evenly spaced around the



72 A. J. Riley and M. V. Lowson

20

15

0

5

0 5 10 15 20 25

25

20

15

10

5

0 5 10 15 20 25

Rex = 118000 Rex = 213 600(a) (b)

y (mm) y (mm)

z 
(m

m
)

Figure 19. Change in the r.m.s. velocity that occurs between the sub-vortical laminar flow field
and the fully turbulent flow field: α = 12.5◦; x/c = 0.6; ∆(y, z) = 0.5 mm.

Rex λ/x
300 000 0.026
462 200 0.026
599 700 0.028

Table 2. Variation in the turbulent wavelength for increasing Reynolds number.

shear layer at a wavelength similar to that seen at pre-transitional Reynolds numbers,
as shown in table 2. In these contour plots the structure in the shear layer has been
emphasized by decreasing the contour spacing in this region compared to that within
the main vortex core.

4. Development of the flow field at the leading edge
Initial studies of the flow showed that there were localized regions of vorticity

of opposite sign to that of the main shear layer near the leading edge (Lowson
et al. 1995). It was therefore unclear if the formation process involved vortices of
opposite sign being generated with subsequent diffusion into the shear layer, or if
vortices of the same sign as the shear layer were generated from the start. A further
question was whether the instability process only started within the free shear layer,
or if disturbances in the boundary layer on the pressure surface of the wing were the
origin of the process. Detailed measurements near the leading edge have given a clear
answer to these questions.

4.1. The two-dimensional flow field at the leading edge

Initial studies were undertaken on the pressure side of the wing. Detailed surveys of
the boundary layer approaching the leading edge were made. The data showed no
evidence of any structure within the laminar boundary layer which could be related to
the free shear layer instabilities. Additionally, experiments undertaken over 85◦ delta
wings with much smaller thickness/chord ratios (see table 1) showed no discernible
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Figure 20. Axial vorticity component showing the shear layer structure still remaining, even at
Reynolds numbers beyond the transition to turbulence. The contour spacing has been increased
within the free shear layer in order to highlight the structure present: α = 12.5◦; x/c = 0.6;
∆(y, z) = 0.5 mm.

difference in the structure of the leeward flow field. The pressure-side boundary layer
was therefore discounted as a potential source mechanism.

Thus it was assumed that the streamwise vortices are characteristic instabilities
of the free shear layer, and it will be the development of the separated windward
boundary layer beyond the leading edge of the wing, in conjunction with fluid from
the wing surface, which will determine how and where the streamwise vortices form.
An extended grid of data, including a section of the windward flow field, was taken
in a plane normal to the wing surface and in the spanwise direction (y, z-plane),
as depicted in figure 21. Figure 22 presents a two-dimensional vector plot for the
in-plane velocity component of the flow field around the leading edge of the wing. It
should be noted that the origin of the coordinate system is arbitrary for this set of
data and is not related to the origin of the body-fixed axes. The velocity distribution
in figure 22 shows that the outer stream of fluid is faster than the inner stream of
fluid for the curved shear layer that leaves the leading edge.
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Figure 21. Streamwise and cross-sectional schematics of the flow field around the leading edge,
illustrating the vortical flow field and the data planes used in acquiring the velocity data in figures
22–27.

Figure 23 shows the two-dimensional streamline distribution for the same case,
clearly illustrating the secondary vortex, the reattachment of the secondary
vortex inboard of the leading edge and the subsequent flow away from the lead-
ing edge. Figure 24 presents the axial vorticity distribution where negative vorticity
from the windward boundary layer diffuses rapidly inboard from the leading edge.
The vorticity distribution shows the formation of a vortical structure above the lead-
ing edge of the wing. The discrepancies near the lower wing surface in figure 24 are
due to the square grid structure near an angled surface. The distribution of velocity
around the leading edge showed that the position of the wing leading edge correlates
well with the high velocity gradients representing the separated windward boundary
layer.
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Figure 22. Vector map of the flow field around the leading edge of the wing: α = 12.5◦; x/c = 0.6;
Rex = 121 900; ∆(y, z) = 0.2 mm; vector ∆(y, z) = 0.4 mm.
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Figure 23. Streamline distribution of the flow field around the leading edge of the wing:
α = 12.5◦; x/c = 0.6; Rex = 121 900; ∆(y, z) = 0.2 mm; vector ∆(y, z) = 0.4 mm.
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Figure 24. Axial vorticity distribution of the flow field around the leading edge of the wing:
α = 12.5◦; x/c = 0.6; Rex = 121 900; ∆(y, z) = 0.2 mm.

4.2. The downstream development of the leading-edge flow field

Measurements were taken within a series of planes between x/c = 0.568 and 0.600,
at a step-size of x/c = 0.004 (figure 21), detailing the region of flow between the
formation of two streamwise vortices. The three-dimensional data set in figure 25 (see
p. 67) shows the development of the axial vorticity at the leading edge. The position of
the wing over the spanwise width of the data planes has also been included, although
it should be noted that the origin of the data planes is 1 mm above the surface of the
wing (z/c = 0.002). It can be seen how the shear layer breaks up as each vortex is
formed and moves away from the leading edge. Figure 26 shows the two-dimensional
plane at x/c = 0.594 where fluid of a positive vorticity is clearly being drawn into the
shear layer from the secondary vortex region by vortex 1 (labelled on the figure) as it
moves away from the leading edge. The process through which this fluid interacts with
and is drawn into the leading edge shear layer was found to be extremely consistent.
There was no sign of unsteady flow from the LDA data suggesting, together with the
previous point, that the process is steady in its nature. Thus the presence of vortices
of opposite sign near the leading edge, originally noted by Lowson et al. (1995), is
found to be due to local entrainment of fluid from the secondary separation region,
and not to be part of the instability process itself. Figure 27 shows a two-dimensional
vector plot overlaying the axial vorticity distribution of figure 26, the latter being
represented by flooded contours in a grey scale, confirming the complex interaction
between the secondary vortex and the free shear layer.

The trajectory of a vortical structure over the acquired data planes, based on
the centre of its axial vorticity distribution, was at an angle of 14◦ − 15◦ to the
wing surface (x, z-plane), as it progresses downstream alongside the secondary vortex
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Figure 26. Variation in the axial vorticity distribution of a streamwise vortex formed at the
leading edge of the wing: α = 12.5◦; x/c = 0.594; Rec = 174 300; ∆(y, z) = 0.25 mm.

(0.005 > z/c > 0.01, cf. figure 25). As the sub-vortex moves away from the leading-
edge region the trajectory moves into line with the outer inviscid flow (approximately
30◦ above the wing surface) as the influence of the secondary vortex becomes less (see
figure 18).

4.3. Free shear layer velocity profiles

Detailed velocity profiles taken through the interface of the free shear layer were
obtained in a spanwise direction (y, z-plane), at various heights above the wing
surface, for x/c = 0.6. Figure 28 (a–c) shows the three components of velocity, non-
dimensionalized with respect to the free-stream velocity, at a local Reynolds number
where vortical structures are forming near the leading edge.
• The axial velocity (u/U∞) shows the profile of the separated windward boundary

layer which contains the classic inflection point due to diffusion of velocity between
the two streams of fluid and normally associated with the K–H instability in plane
mixing layers. As the height increases, away from the wing surface, the free shear
layer moves outboard from the leading edge, as can be seen also from the previous
vector and velocity plots (figures 22 and 23).
• The spanwise velocity (v/U∞) is initially large in the outboard direction as the

windward flow negotiates the leading edge of the wing. Also near the surface, inboard
of the leading edge, there can be found a change of direction in the spanwise velocity
representing the reattachment point of the secondary vortex. As the flow moves away
from the surface the spanwise velocity tends to zero corresponding to the rotation of
the velocity vectors past the leading edge (figure 22).
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Figure 27. Overlay of vectors on the axial vorticity distribution, illustrating the combination of
fluid from both the upper and lower surfaces in the formation of the vortical structure: α = 12.5◦;
x/c = 0.594; Rec = 174 300; ∆(y, z) = 0.25 mm; vector ∆(y, z) = 0.5 mm.

• The vertical component of velocity (w/U∞) incorporates a large inflection point
that does not correspond to the position of the inflection point in the axial velocity.
As the distance increases from the surface of the wing it can be seen that the inflection
point in the vertical velocity remains at the same relative position in the free shear
layer, corresponding approximately to the minimum in the axial velocity.

The total velocity distribution in figure 29, for z = 1.1 mm off the surface (z/c =
0.002), indicates that the interface of the free shear layer is located at y ≈ 2.7 mm
based on the local minimum in velocity. The point of inflection in the vertical velocity
was found to correspond to this local minimum and can also be related to the position
of maximum axial vorticity in the free shear layer. By z = 4.1 mm (z/c = 0.009) the
point of inflection in the vertical velocity corresponds to the centre of a sub-vortex. If
the flow field is assumed to be conical, then the sub-vortices can be said to form at the
interface of the free shear layer. This is also apparent from the vorticity distributions
in figure 25.

If the velocities at z = 1.1 mm are resolved into the direction of the interface
vector then it can be seen that the inflection point in the resolved vertical component
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Figure 28. Variations in the three components of velocity at the leading edge of the wing,
with increasing distance off the wing surface (non-dimensionalized with respect to the free-stream
velocity): α = 12.5◦; x/c = 0.6; Rex = 11 800; ∆(y, z) = 0.1 mm.
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Figure 29. Variation in the total velocity magnitude at the leading edge of the wing: z = 1.1 mm;
α = 12.5◦; x/c = 0.6; Rex = 118 000; ∆(y, z) = 0.1 mm.
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Figure 30. Variation in the velocity components, resolved in the interface vector direction, at the
leading edge of the wing: z = 1.1 mm; α = 12.5◦; x/c = 0.6; Rex = 118 000; ∆(y, z) = 0.1 mm.

remains at the interface of the shear layer (figure 30). However, the surrounding data
points are no longer coincident with the resolved set of axes. The axis transformation
was 18.4◦ in the longitudinal plane (x, z) and 35.0◦ in the lateral plane (x, y), which
means that the local data points around the interface are less than 0.3 mm off the
resolved axes. Hence, due to the axial derivatives being small, the point of inflection
will almost certainly still be at the interface. This was confirmed by interpolating
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the volumetric data set presented in § 4.2 (cf. figure 25) and extracting the relevant
velocity profiles.

The trajectory of the interface (and hence the position of inflection) decreases
from 18◦ to 14◦, relative to the wing surface in the (x, z)-plane, over the range
0 < z/c < 0.004. This range of z/c is prior to the formation of any sub-vortices.
The trajectory correlates well with the trajectory of the vortical structure, obtained
over the range 0.005 < z/c < 0.01, cf. figure 25. A two-dimensional inflection point,
stationary with respect to the main flow, is known to produce co-rotating vortices in a
simplified two-dimensional boundary layer as shown by Stuart (Gregory et al. 1955).
However, in this case the flow field surrounding the free shear layer inflection point
has a significant spanwise component and the trajectory of the inflection point in the
(x, y)-plane continually changes as the free shear layer leaves the leading edge, cf.
figure 22.

Data were also obtained at the same position over the wing at the local Reynolds
number in figure 4 (a) where the free shear layer does not exhibit vortical structures.
It could be seen that there is still an inflection point in the vertical component of
velocity that corresponds to the interface of the free shear layer. However, in this case
vorticity is quickly diffused as the free shear layer moves away from the wing surface
and it does not congregate into vortices.

5. Discussion of the steady instability
5.1. Source of the instability

The streamwise vortical structures that develop with increasing Reynolds number fol-
low a helical path into the core of the primary vortex and are highly three-dimensional
in nature. The strength of the sub-vortices decreases as they progress around the main
vortex, due to the diffusion of vorticity. However, a small region of growth was found
near the leading edge where the sub-vortices are formed. Three-dimensional instabil-
ity structures are known to appear in both two-dimensional and three-dimensional
shear flows. In three-dimensional shear flows streamwise instabilities can occur as the
primary instability, as a direct consequence of the curvature of the flow (Gregory
et al. 1955; Poll 1985).

5.1.1. Curvature effects

Two sources of curvature have been identified in the leading-edge region over
the 85◦ delta. The first source was due to the flow having to negotiate the sharp
leading edge and can be associated with centrifugal effects. The consequence of the
centrifugal instability concept (Rayleigh 1916) for curved free shear layers has recently
been examined by Liou (1994). Centrifugal effects have a destabilizing effect if the
inner stream is faster. In the case of the delta wing the presence of the secondary vortex
stabilizes the shear layer with respect to centrifugal instability near the leading edge,
cf. figure 22. In physical terms, the shear layer is stable to any overturning/centrifugal
instability that would try to throw fluid out from the inner stream. In mathematical
terms, the square of the circulation does not decrease in the radial direction.

Liou analysed the instability of a curved shear layer with a higher speed inner
stream. He found that the characteristic form of instability in the free shear layer
was as pairs of contra-rotating vortices, similar to the Taylor–Görtler instability
observed in a boundary layer. This is obviously different from the co-rotating vortex
instability found in the present case. On the other hand, away from the leading edge
and associated secondary separation, at higher Reynolds numbers when the rolled-up
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shear layer is more fully formed, there will be an increase in velocity passing inwards
through the shear layer towards the concentrated vortex core. Thus there would be
the prospect of a centrifugal instability under these conditions, and it is possible
that this effect plays a role in transition of the free shear layer at higher Reynolds
numbers.

There is also a second source of curvature in the downstream plane where stream-
lines are turned vertically relative to the wing surface (figure 18). However, this source
of curvature occurs after the formation of the sub-vortices has begun and well past
the leading edge. Hence it appears that this second curvature is also unlikely to be
responsible for the formation of the sub-vortical structures.

5.1.2. Vortex sheet instabilities

The distribution of the axial vorticity at the leading edge of the wing (figure 24)
showed that, although negative vorticity is initially produced within the windward
boundary layer, it diffuses rapidly across and inboard of the leading edge. In con-
junction with the velocity distributions the position of the maximum axial vorticity
was found to correlate with the interface of the free shear layer, as would be ex-
pected. This three-dimensional vortex sheet, that springs from the leading edge of
the wing, then rolls up to form the primary vortex. As discussed in the Introduction,
the instability of vortex sheets is generally dominated by K–H-type instabilities. The
unsteady vortical structures in the free shear layer of a delta wing, found by several
investigators, have been essentially two-dimensional, and sprung from the whole of
the leading edge. They have a strong resemblance to the spanwise vortical structures
found in a two-dimensional mixing layer (Winant & Browand 1974) and hence have
been associated with the K–H instability. It should be noted that in the present
case the steady instabilities observed are localized. If the association of the unsteady
quasi-two-dimensional structures with the K–H instability is correct, then the princi-
ple of the K–H instability, which is based on two-dimensional arguments, can also be
applied to a highly three-dimensional vortex sheet. Taking this a step further, if the
latter is the case, then disturbances can be amplified by the K–H instability mech-
anism in any plane perpendicular to the vortex sheet. This is an important concept
regarding the amplification of disturbances in a three-dimensional vortex sheet.

The K–H instability mechanism itself has been covered previously, a good example
being Batchelor (1967, pp. 511–517). Other relevant theories, also connected with
the instability of a vortex sheet, have been put forward. Rayleigh’s inflection point
theorem for an inviscid fluid, based on a linear analysis of an inflectional velocity
profile (resembling a simple mixing layer), showed that disturbances would amplify
at the position of inflection (Rayleigh 1880). The vanishing of the vorticity gradient
is a criterion for instability put forward by Lin (1945) in a physical interpretation
of Rayleigh’s inflection point theorem. An inflection point in a two-dimensional flow
represents the position where the vorticity gradient is zero. Based on the analysis of
the flow field in terms of vortex lines, disturbances can be amplified at the inflection
point due to the restoring tendency of the surrounding vortex lines being impaired.
However, all these theories are based on simplified flows, whereas the free shear layer
in this case is highly three-dimensional.

Analysis of the leading-edge region in § 4 found that the vortical structures form at
the interface of the free shear layer. The detailed free shear layer velocity profiles in
figure 28 showed that there are major inflection points in both the axial and vertical
components. However, only the inflection point in the vertical component is present
at the interface and can be related to the maximum axial vorticity. If the vertical
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Figure 31. The velocity distribution over a swept wing showing the inflection point in the
cross-flow velocity profile.

velocity profile could be analysed purely as a two-dimensional flow field, it would
be remarkably similar to the classical profile across two parallel streams of fluid and
hence subject to the K–H instability mechanism. Mathematically the velocity profile
is also dynamically unstable (Fjortoft 1950); however this is still not a sufficient
criterion for instability by itself (Drazin & Reid 1981). Figure 30 showed that when
the components of velocity are resolved with respect to the interface vector, the
inflection point in the resolved vertical plane (or more correctly the ‘critical’ cross-
flow plane, see § 5.1.3) remains at the free shear layer interface, and is now stationary
with respect to the interface vector. If the K–H instability mechanism could amplify
disturbances in this plane, which is perpendicular to the interface vector and hence
the vortex sheet, the result would be a system of stationary, co-rotating vortices

5.1.3. The case for the cross-flow instability

Parallels can also be drawn here between this three-dimensional free shear layer
instability and the simpler case of the cross-flow instability found in boundary layers
over swept wings/cylinders and rotating disks. This is an inertial instability, also
occurring as a series of fixed-wavelength, co-rotating vortices and is accepted to be
due to an unstable inflection point in the cross-flow velocity profile (Saric & Reed
1988). For the case of a boundary layer the cross-flow velocity profile (Ucf) is usually
defined as being perpendicular to the inviscid streamline (Us), as shown in figure 31. A
necessary criterion for the production of stationary streamwise vortices in a boundary
layer is that this inflection point has zero velocity in the direction of propagation of a
disturbance. The comparison between these two instabilities has already been drawn
by Washburn & Visser (1994). They noted that the shear layer encounters a pressure
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Figure 32. Schematic showing the critical velocity profile with respect to the inviscid flow, the
secondary vortex and trajectory of the sub-vortices.

gradient as it leaves the leading edge and hence the mean streamlines, aligned with
the shear layer, cross this pressure gradient. After the sub-vortices have formed and
begun to wind around the main vortex, they followed constant-pressure contours. It is
well-known that the pressure gradient is a key factor in the formation of an unstable
inflection point, and hence cross-flow-induced vortices, in a boundary layer.

An inflection point is always present in a free shear layer in the main flow direction
due to diffusion of velocity across the interface of the free shear layer. In a simple
one-dimensional mixing layer there can be inflection points in two directions if the
velocity components are resolved in a direction other than the main flow. However,
the presence of an inflection point in a plane perpendicular to the main flow direction
is due to the highly three-dimensional nature of the two layers of fluid that meet at
the leading edge of the delta wing. The key issue here is the presence of the secondary
vortex which induces the inner surface velocity vector of the free shear layer to vary
from the outer velocity vector. The majority of the pressure field over a delta wing
is prescribed by the two main vortices. The presence of these main vortices induces
an adverse pressure gradient on the wing surface, which creates separation and the
formation of the secondary vortex. This secondary vortex modifies the local pressure
field near the leading edge and plays a large part in determining the inner surface
velocity vector of the free shear layer. The flow field at the leading edge of the wing
is depicted in figure 32. The outer inviscid flow at the leading edge is moving in a
direction away from the wing surface. Across the separated shear layer, in a spanwise
direction, the velocity vector is rotated into a direction either parallel to or towards the
wing surface, depending on the height above the wing surface. This can be deduced
from the velocity profiles in figure 28. In essence the experimental data provided here
confirm the conclusion of Washburn & Visser that the shear layer crosses a pressure
gradient as it leaves the leading edge. This spanwise pressure gradient is due to the
presence of the secondary vortex.

The fact that the free shear layer crosses this pressure gradient results in the
formation of a stationary inflection point in the plane perpendicular to the direction
of the flow in the vortex sheet (figure 30). In cross-flow instability in boundary layers
it has been found that the normal to the trajectory of the vortical structures (Utr) is
closely associated with the ‘critical’ profile (Ucr), which is defined as the velocity profile
where the inflection point has zero velocity (Poll 1985). In the present experiments,
it has been found that the trajectory of the stationary point of inflection correlates
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with the trajectory of the vortical structures. Hence the critical profile is again closely
associated with the normal to the trajectory of the sub-vortices, as shown in figure 33.
In other words, this unstable cross-flow inflection point mirrors the case of cross-flow
instability in boundary layers.

However, the description of this free shear layer cross-flow instability is, in essence,
identical to the concept of a three-dimensional K–H instability mechanism, proposed
in § 5.1.2. What differences are there in the concepts of K–H instability and cross-flow
instability? If one analyses the velocity profile in figure 31 in terms of the streamwise
vorticity vector, it is clear that the vorticity distribution peaks at the position of
inflection. A peak in vorticity in the flow field is also representative of a vortex sheet
and it may be possible for the same concepts of instability to be applied to both
cases. Hence, the formation of these steady, co-rotating sub-vortices is most readily
explained in terms of a local three-dimensional K–H-type mechanism.

5.2. Modelling the delta wing free shear layer

Recent linear stability analyses of the cross-flow instability over swept wings have
taken advantage of improvements in numerical methods to solve the three-dimensional
linear stability equations, including the curvature terms (Collier & Malik 1988).
However, these solutions still incorporate the parallel flow assumption in order to
make the instability analysis a two-dimensional problem. The application of the
linearized equations to a curved surface such as the leading edge of a swept wing
has many similarities to the development of the free shear layer over a delta wing.
Application of the three-dimensional linearized equations to this problem, with the
appropriate boundary conditions for a free shear layer, may provide some indi-
cation of the instability structure found experimentally. Of course, the local flow
around the free shear layer of a delta wing is inherently three-dimensional. Hence
for two-dimensional instability concepts to be employed, such as the parallel flow
assumption, the spanwise component of flow would have to be ignored. It is not
clear without taking a mathematical approach to the problem how significant the
effect of this simplification would be. Liou (1994) has already shown numerically that
three-dimensional structures, resembling Taylor–Görtler vortices found in bound-
ary layers, form in a curved free shear layer. However, in trying to simplify the
flow field in order to analyse it in mathematical linear two-dimensional terms it
is easy to lose sight of the more general aspects of three-dimensional instabil-
ity, such as flow with stretching and interaction of vortex lines (Drazin & Reid
1981).

The deficiencies of Eulerian numerical schemes in modelling a complex, separating
flow field, such as a delta-wing free shear layer, have already been pointed out in the
Introduction. The application of a Lagrangian-type scheme, which has already been
demonstrated successfully by Koumoutsakos & Shiels (1996) on a flat-plate flow field,
is an attractive option that may well provide more insights into the development of
this complex free shear layer.

In the analogy with the boundary layer cross-flow instability it should be recognized
that the stationary inflection point concept is primarily based on mathematical
features. As pointed out by Gregory et al. (1955), ‘a fundamental problem that has
not been solved is the reason why a disturbance which appears to be stationary, also
appears to be the dominant one over a considerable area of instability’. This is a
point that is also applicable to the delta-wing free shear layer and does not appear
to have been resolved by more recent work.
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Reynolds numbers

Figure 33. Flow field over an F-16 aircraft showing the vortical structures over the LEX made
visible by condensation effects.

5.3. Transitional/turbulent flow

Results over the 85◦ delta found the initial transition to turbulence to be dependent
on a specific local Reynolds number, confirming the results of Lowson (1988) over
an 80◦ delta wing.

The transition to turbulence dissipates the concentrated vortical structures that
characterized the pre-turbulent flow field. However, previous results from investiga-
tions by Verhaagen et al. (1993) and Visser & Washburn (1994) have indicated that
these structures continue to form at Reynolds numbers beyond transition. Also flow
visualization obtained over aircraft in flight, utilizing condensation effects in the air
(Campbell et al. 1989), have shown sub-vortical structures in LEX flow fields. The
example shown in figure 33 is an F-16, courtesy of the USAF. These structures have
been reproduced at low Reynolds numbers using a 1/32 scale model of the F-16 in
this Department’s low-turbulence wind tunnel. Based on the instability mechanism put
forward in § 5.1.2 for the formation of these structures, which is an inertial instability,
it would be reasonable to expect the process to continue at Reynolds numbers beyond
transition. Velocity data obtained throughout turbulent vortices has confirmed this
hypothesis for the 85◦ delta in this study (figure 20). The wavelength of the structures
was found to be similar at high Reynolds number to that at laminar Reynolds num-
bers near transition. Also the trajectory of these turbulent vortices correlated with
laminar trajectories, the turbulent trajectories being at a slightly greater angle to the
wing surface due to the increasing strength of the main vortex.

As with the previous time-averaged velocity data of other investigators the vortical
structures are very weak and only become traceable through vorticity data some
distance above the leading edge. This is unlikely to be due to the formation process
being delayed, although more detailed data in the leading-edge region for a turbulent
flow field would be required to confirm this. A more probable explanation was found
in the r.m.s. distributions for the turbulent vortex where the highest r.m.s. values were
found near the leading edge (figure 19). This could well mask the weak structure to
be found in this region.

The technique of LDA, with its time-averaged data, does not lend itself to the
quantitative mapping of turbulent flow structures, even steady ones. It is difficult
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to form any kind of estimation as to the real strength of the structures. Note that
the visualization of the sub-vortices at full scale from condensation is fundamentally
different from low Reynolds number smoke visualization. The appearance of the
condensation corresponds to low-pressure regions within the vortices. Thus the fact
that the sub-vortices become visible at flight Reynolds numbers through condensation
effects suggests that the low-pressure region of the sub-vortices is differentiable from
the surrounding flow field. A possible solution is the use of a particle image velocimeter
(PIV) to obtain an instantaneous picture of the flow field.

The continued formation of these streamwise vortices at high Reynolds number
could have possible consequences for modern fighter aircraft. Configurations with
large LEX, such as the F/A-18, could suffer fluid/structural interaction as these vor-
tical structures pass downstream. Certainly the F/A-18 has suffered fatigue problems
on the two fins downstream of the LEX. The likely reason for this is some kind of pe-
riodic forcing of the structure resulting from periodicity in the aerodynamic flow field.
Vortex breakdown is the prime candidate for the cause of this interaction. However,
it has been found that variations in sweep and angle of attack alter the wavelength
of the sub-vortices. Hence the variation in surface pressures on the fins, caused by
the downstream progression of these streamwise structures during manoeuvres, could
also result in a forcing interaction. Interestingly, the excessive forcing on the vertical
fins of the F/A-18 has been alleviated by applying an inboard fence near to the
junction of the LEX/main wing. Recent flow visualization studies by Thompson
(1997) have shown that the fence induces the formation of a vortical structure at
the leading edge of the LEX, that is remarkably similar to the sub-vortices found
in present investigations within this Department over 70◦ delta wings. Interaction
between the vortex breakdown and the induced vortex appears to reduce the forcing
on the fins. Further research is certainly required to determine whether these kinds
of instability structures have either a beneficial, or a detrimental, part to play in this
kind of fluid/structural interaction.

6. Conclusions
Simultaneous three-dimensional velocity data have been obtained over an 85◦

delta wing, at 12.5◦ angle of attack, for Reynolds numbers ranging from 4 × 104 to
6×105. This work, in combination with a comprehensive program of flow visualization
experiments, was aimed at providing improved understanding of the steady instabilities
previously observed in the curved shear layer. The study has both revealed new
aspects of the vortical flow field and confirmed previous conclusions based on flow
visualization results.
• The streamwise streaks observed in these experiments and by a number of other

investigators, in the free shear layer over delta wings, have been shown to represent
a series of fixed-wavelength, co-rotating vortices–all rotating in the same sense as the
main vortex core.
• The sub-vortical structures form just downstream of the leading edge of the wing

and are a characteristic instability of the free shear layer.
• The flow is found, from both flow visualization results and velocity data, to be

a function of local Reynolds number based on distance to the apex
• Based on flow visualization results, the free shear layer undergoes transition

to turbulence at a location which is also a function of local Reynolds number. In
addition, the length of the transition region appears to be approximately constant.
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• The cause of the steady sub-vortices is suggested to be a local three-dimensional
Kelvin–Helmholtz instability of the free shear layer, that has parallels to the cross-flow
instability observed in three-dimensional boundary layers.
• Detailed velocity data in the leading-edge region have confirmed the existence of

a three-dimensional stationary inflection point within the free shear layer, consistent
with the formation of steady sub-vortices.
• Velocity data at high Reynolds number have shown that the sub-vortices continue

to form at the leading edge of the delta wing. This provides an explanation for the
flow visualizations at flight Reynolds numbers over LEXs of fighter aircraft such as
the USAF F/A-18 and F-16.

The authors gratefully acknowledge the support of EPSRC in funding this research
effort. In addition, we would like to thank the referees for their helpful comments
and interpretations.
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